TREES AS GREEN INFRASTRUCTURE IN OUR CITIES

Darryl Carlyle-Moses, Department of Geography & Environmental Studies, TRU

Introduction

Benefits of Trees for Urban Stormwater Management

□ Interception loss

Canopy drainage characteristics

□ Transpiration

Benefits of Trees for Urban Stormwater Management Continued

Improve efficiency of other stormwater control measures (SMC's)

Canopy Water Balance

- Interception loss (Ic):
 evaporation of rainfall
 (Pg) stored on the canopy
- Throughfall (TF): passes directly through canopy gaps or drips from that canopy
- Stemflow (SF): flows along branches and down the boles of trees to the ground.

$$I_c = P_g - (TF + SF)$$

Typical Values for Mature Forests

Percentage of Growing-Season Rainfall

	Deciduous	Coniferous
Interception Loss	13 (10 – 20)	26 (15 – 30)
Throughfall	82 (78 - 85)	73 (70 - 85)
Stemflow	5 (3 – 9)	1 (0 – 2)

Urban Canopy Interception Loss Percentage of Season-Long Rainfall

Isolated Street &	Park Trees	36
Broadleaf	33	
Coniferous	55	
Residential Lawns		15
City-Wide		
Tree-Scale		17
City-Scale		1-2

Urban Remnant Forests

Urban Tree Interception Loss Efficiency

- On a per canopy area basis urban tree interception loss greater than natural forest counterparts. Why?
 - Urban tree architecture differs more voluminous canopies, greater LAI
 - Isolated canopies have a greater effective area to capture wind-driven rainfall
 - Increased energy available for evaporation

Components of Interception Loss

- Canopy Storage
 - Evaporated after event
- Evaporation During Rain Event
- $\Box I_c = S + E$

Example:

Rainfall depth = 8 mm, duration = 3 hours:

 I_c from tree with S = 1.0 mm and E = 0.25 mm / h

$$I_{c} = 1.0 + (0.25 \text{ mm} / \text{h x 3 h})$$

$$I_{c} = 1.0 + (0.75 \text{ mm})$$

$$I_{c} = 1.75 \text{ mm or } 22 \%$$

Canopy Drainage

- How a tree canopy partitions drainage through a canopy can be important in cities.
- Throughfall is diffuse,
 stemflow is concentrated
- Peak throughfall may be temporally delayed compared to peak rainfall

Liters / m^2

Stemflow in Urban Environments

Stemflow greater for isolated trees

Average season-long stemflow as high as 12%, event maximum = 23%

Funneling Ratios

Funneling Ratios for rains > 10 mm averaged 26 (max average = 86)

Event funneling ratios as high as197

Rain = 25.6 mmSF = 5040.6 mm

□ Importance:

- Stormwater Management
 - SF = 10 40 % of Interception Loss
- Self-Irrigation

Thank You

https://www.youtube.com/watch?v=DqXwgD8u8Pg

Contact: Darryl Carlyle-Moses dcarlyle@tru.ca